Journal of Catalysis 366 (2018) 127-138

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Catalytic consequences of reactive oxygen species during C_3H_6 oxidation on Ag clusters

Petar T. Lachkov, Ya-Huei (Cathy) Chin*

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada

ARTICLE INFO

Article history: Received 7 June 2018 Accepted 5 July 2018 Available online 20 August 2018

Keywords: Propylene oxide Epoxidation Alkene oxidation Combustion Chemisorbed oxygen Ag cluster Hydroperoxyl species Hydrogen abstraction Oxygen coverage

1. Introduction

Propylene (C_3H_6) epoxidation reactions produce propylene oxide (C_3H_6O), an important precursor for the synthesis of polymers, antifreezes, and solvents [1–3]. Conventional propylene epoxidation processes use chlorine and calcium hydroxide [3,4], alkyl hydroperoxides {(CH₃)₃COOH, $C_6H_5CH(CH_3)OOH$, or C_6H_5C (CH₃)₂OOH} [3,5,6], hydrogen peroxide [2,3], or hydrogen-oxygen mixtures [2,7–9] as the co-reagents. These reagents are expensive and their use leads to either chemical waste or generation of coproducts at stoichiometric ratios [1–3]. The H₂O₂ and H₂-O₂ epoxidation processes are practical pathways and remain superior alternatives for modern plants [1]. However, a direct epoxidation route that inserts an oxygen atom from a molecular O₂ into the C=C bond of C₃H₆ is an attractive route, if one could minimize CO_x formation. If carried out selectively, this route produces only C₃H₆O.

Direct epoxidation with O_2 is the preferential pathway for ethylene oxide (C_2H_4O) formation from ethylene (C_2H_4) on Ag catalysts [1,2,10–12]. In contrast, C_3H_6 epoxidation with molecular O_2 remains unselective on Ag catalysts with much lower yields, when

* Corresponding author. *E-mail address:* cathy.chin@utoronto.ca (Y.-H. (Cathy). Chin).

ABSTRACT

Rate measurements in the kinetically controlled regime, kinetic fittings, and isothermal C_3H_6 and O_2 uptake experiments lead to a proposed mechanism for C_3H_6 epoxidation and combustion reactions on predominantly O* covered Ag cluster surfaces. Epoxidation occurs via kinetically relevant reactions between chemisorbed oxygen adatoms (O*) and gas phase C_3H_6 . In contrast, combustion occurs via kinetically relevant hydroperoxyl (OOH*) formation, formed from H transfer from H_2O^* to O_2^* . C_3H_6 oxidation reactions with C_3H_6 - O_2 - H_2O - H_2O_2 mixtures show that H_2O_2 derived OOH* species are more effective oxidants than O* for C_3H_6 combustion, as confirmed from H_2O_2/D_2O_2 kinetic isotope effects. Both $C_3H_6^*$ and O* coverages are near or at chemical equilibrium during steady-state reactions, as confirmed from in-situ chemical titrations. C_3H_6O and CO_x site-time-yields and CO_x selectivities increase with increasing Ag cluster diameters and Ag surface coordination, because O*, O_2^* , H_2O^* , and OOH* oxidants remain more weakly bound and therefore much more reactive.

© 2018 Elsevier Inc. All rights reserved.

comparing at similar conditions. At moderate temperatures and identical conditions, C_3H_6 epoxidation rates are lower than C_2H_4 epoxidation rates, i.e., 4–10 times smaller on 49–656 nm Ag clusters $(O_2/C_nH_{2n} = 2, n = 2 \text{ or } 3, 473 \text{ K})$ [13] and 45 times smaller on polycrystalline Ag $(O_2/C_nH_{2n} = 3.3, 440 \text{ K})$ [14]. Fig. 1a and 1b summarize the Arrhenius relation for the first-order rate coefficients $(k_i = r_i[C_nH_{2n}]^{-1}$, where r_i is the site-time-yield of species $i, i = C_nH_{2n}O$ or CO_x) for C_nH_{2n} epoxidation and combustion, respectively, on Ag based catalysts reported in the literature [13–18]. At similar reaction conditions, the $k_{C_3H_6O}$ values are between zero and two orders of magnitude smaller than the $k_{C_2H_4O}$ values (Fig. 1a), indicating that epoxidation occurs less effectively for C_3H_6 than C_2H_4 .

Kinetic [14,18–20] and surface science [12,18,19,21] studies have disagreed on whether C_2H_4 and C_3H_6 epoxidation occur via atomic [19,21] or molecular [12,14,18] oxygen insertion. Kinetic studies [10,11,22] and density functional theory (DFT) calculations [10,23] proposed that a chemisorbed oxygen adatom (O*, where * denotes a Ag site) inserts into C_2H_4 , forming an oxametallacycle (Ag-O-CH₂-CH₂-Ag) intermediate [11,23] during C_2H_4 -O₂ reactions, as detected with high resolution electron energy loss spectroscopy (HREELS) during C_2H_4O adsorption on Ag(1 1 1) at 250 K and calculated with DFT [23]. Similarly, C_3H_6 -O₂ reactions also occur via the same route that involves oxametallacycle intermediates [24–27]. In contrast, the alternative mechanistic proposal suggested that

Fig. 1. First-order rate coefficients $(k_i = r_i [C_n H_{2n}]^{-1}$, where r_i is the site-time-yield of species *i*: $C_n H_{2n}$ O or CO_x , n = 2 or 3) of $C_2 H_4$ (\bigstar , \bigcirc , \circlearrowright , \bigstar , \bigstar) and $C_3 H_6$ (\bigstar , \Leftrightarrow , \blacklozenge , \bigstar , \bigstar) (a) epoxidation and (b) combustion during $C_2 H_4 - O_2$ and $C_3 H_6 - O_2$ reactions on 1 and 5 wt% Ag/SiO₂ (3.1 nm clusters pre-treated with 3 kPa O_2 and 6 kPa $C_3 H_6$ at 573 K: \Leftrightarrow , 5.1 nm clusters pre-treated with 3 kPa O_2 and 6 kPa $C_3 H_6$ at 443 K: \bigstar , this work), 20 wt% Ag 0.1 wt% $Y_2 O_3$ 0.1 wt% $K_2 O/A I_2 O_3$ (\diamondsuit , 16 nm clusters) [16], 7 wt% Ag/CaCO₃ (\bigstar , \bigstar , 149 nm clusters) [13], 1.71 wt% Ag/SiO₂ (\circlearrowright , 13 nm clusters) [17], Ag(1 1 0) (\bigtriangleup) [18], Ag(1 1 1) (\bigstar) [18], and polycrystalline Ag (\checkmark and \checkmark [14]; \bigcirc [15]) plotted against the inverse temperature. The $O_2/C_n H_{2n}$ feed ratios during the rate measurements are denoted in the figure.

 O_2^* reacts directly with C_2H_4 [12,14,18] or C_3H_6 [14], cleaving its O=O bond and forming $C_nH_{2n}O^*$ and O^* .

In parallel to epoxidation reactions, olefins also undergo combustion with O₂ on Ag catalysts [1,2,10-12]. At identical conditions, the combustion rates for C_3H_6 are smaller than C_2H_4 : ~1.2 times smaller on Ag/CaCO₃ ($O_2/C_nH_{2n} = 2$, 473 K) [13] and two times smaller on polycrystalline Ag $(O_2/C_nH_{2n} = 3.3, 440 \text{ K})$ [14]. Likewise, the $k_{CO_{1}}$ values are similar for C₃H₆ and C₂H₄ combustion (Fig. 1b). These findings contradict the expected marked increase in the hydrocarbon combustion rate with increasing carbon number and with the concomitant decrease in C--C and C--H bond strengths [28,29]. Kinetic [14,18,19] and surface science [12.18.19.21] studies have not led to an unambiguous conclusion on the catalytic involvement of either molecular oxygen [14,18] or atomic oxygen [12,19,21] in C_2H_4 and C_3H_6 combustion. In the molecular pathway, the adsorbed O₂* initiates C₃H₆ combustion by abstracting the γ -H [14]. DFT calculations on Ag(100), Ag(1 1 1), as well as Ag₁₉ clusters supported on Al₂O₃ [24–27] have proposed, however, that the oxygen adatom instead of molecular oxygen is the γ -H abstractor that leads to allyl (C₃H₅^{*}) formation as the intermediate in C_3H_6 combustion.

Others have examined the C₃H₆-O₂ reactivity trends on supported Ag [13,26,30], Cu [30,31], Au [30,32,33], bimetallic Ag-Cu [34], Group 4-12 metal oxide [35], as well as Ag and Cu based materials promoted with K₂O [16,36], BaO [16], CaO [16], and Y_2O_3 [16]. Despite these studies, the kinetic dependencies for the individual epoxidation and combustion reactions and the mechanistic reason behind the poor selectivity for C₃H₆ epoxidation on Ag clusters have not yet been resolved completely [37]. With this in mind, the objective of this study is to understand mechanistically what leads to the poor selectivity in C₃H₆ epoxidation. Here, we probe the rate dependencies, identity of the most abundant surface intermediates, and the reactive oxygen species with combined kinetic, isotopic, and chemical titration methods on Ag clusters dispersed on inert SiO₂ supports. We interpret the kinetic dependencies for these concomitant reactions in the kinetically controlled regime by considering the involvements of the various oxygen species derived from O₂ and H₂O, where the latter is a by-product from the undesired combustion reaction. H₂O plays a significant role in C₃H₆ oxidation, possibly because its reaction with a diatomic oxygen (O_2^*) forms a hydroperoxyl intermediate (OOH^{*}) that participates in the combustion reaction, as confirmed

from strong H_2O_2/D_2O_2 kinetic isotope effects. We show that O^{*} and $C_3H_6^*$ co-exist on Ag cluster surfaces during C_3H_6 - O_2 reactions. Larger Ag clusters, due to their weaker binding to adsorbed species, are more reactive for both the epoxidation and combustion reactions. These larger clusters, however, promote the combustion reaction to a larger extent, leading to lower epoxidation selectivities.

2. Catalyst preparation and experimental methods

2.1. Synthesis of supported Ag clusters dispersed on porous SiO_2 particles

Supported silver catalysts were prepared by the incipient wetness impregnation method. Silica (Grace, Davisil Chromatographic Silica, 1.23 cm³ g⁻¹ pore volume, 15 nm pore diameter, 330 m² g⁻¹, 70–200 μ m SiO₂ diameter) was crushed to <75 μ m particle diameter (defined as the support diameter). The silica particles were heated at 0.033 K s⁻¹ in stagnant ambient air and were held at 673 K for 4 h and then cooled to 393 K. The treated silica particles were impregnated with an aqueous silver nitrate solution, which was prepared by dissolving AgNO₃ (Sigma-Aldrich, 99.9999% trace metal basis) in doubly deionized water (>18.2 M Ω cm), to achieve a silver loading of 1 or 5 wt%. The sample was next dried for 24 h at 353 K in stagnant ambient air prior to treatment in flowing dry air (Linde, 99.99%) at 0.5 $\text{cm}_{\text{STP}}^3 \text{g}^{-1} \text{s}^{-1}$ by heating at 0.033 K s⁻¹ to 773 K and holding for 2 h, before cooling to ambient temperature and introducing flowing He (Linde, 99.999%) at 0.5 $cm_{STP}^3 g^{-1} s^{-1}$ for 0.5 h. The sample was heated at 0.033 K s⁻¹ in 0.5 $\text{cm}_{\text{STP}}^3 \text{g}^{-1} \text{s}^{-1}$ flowing H₂ (Linde certified standard, 5% H₂ in He) to 598-723 K for 5 h to achieve Ag clusters with a range of mean diameters. Ag clusters with 3.1 and 11.3 nm diameters were produced from 1 wt% Ag/SiO₂ catalysts treated in H₂ at 598 and 723 K, respectively, while 5.1 and 29.3 nm Ag clusters were produced from 5 wt% Ag/SiO₂ catalysts treated in H₂ at 598 and 723 K, respectively. After the treatment, the sample was cooled under flowing He at $0.5 \text{ cm}_{\text{STP}}^3 \text{ g}^{-1}$ s⁻¹. At ambient temperature, a flowing 1% O₂-4% N₂-95% He stream {prepared from air (Linde, 99.99%) and He (Linde, 99.999%); 0.5 $cm_{STP}^3 g^{-1} s^{-1}$ was introduced to the catalyst for 6 h. Ag/SiO₂ powders were mixed with SiO₂ at SiO₂-to-catalyst mass ratios of 1 and 3. Undiluted and diluted 1 and 5 wt% Ag/SiO₂ powders were pressed into pellets using a pellet die (Carver, 31 mm ID) at 130 MPa for 0.5 h in a hydraulic press (Specac). The resulting disc was then crushed and sieved to obtain particles between 125 μ m and 180 μ m.

2.2. Isothermal volumetric O_2 , H_2 , and C_3H_6 uptake measurements

O₂ (Linde, 99.995%), H₂ (Linde, 99.999%), and C₃H₆ (Linde, 99.95%) uptakes were carried out at 443 K using a volumetric adsorption-desorption apparatus (10.6 cm³_{STP} gas manifold and 11.4 cm_{STP}^3 reaction chamber) connected to a pressure transducer (MKS, 120AA Baratron, dual ranges of 0-13 and 0-133 kPa, 0.1% accuracy), vacuum turbopump (Pfeiffer, HiPace 80), diaphragm pump (Pfeiffer, MVP 015-2), 6-way valve (Valco Instruments, H-EHC6WEZ), and thermal mass flow controllers (Brooks, SLA5850). The total leak rate of the system was $5 \times 10^{-8} \text{ cm}_{\text{STP}}^3 \text{ h}^{-1}$ at 443 K. Catalysts were loaded into a guartz sample holder and heated under flowing H₂ (Linde, 99.999%, $0.5 \text{ cm}_{\text{STP}}^3 \text{ g}^{-1} \text{ s}^{-1}$) at 0.033 K s^{-1} to 598 K, where they were held for 1 h. The sample holder and manifold were evacuated under dynamic vacuum (10^{-5} Pa) for at least 12 h at 598 K before being cooled to 443 K. The mean Ag cluster diameter was determined from the difference between the total and reversible extrapolated O₂ uptakes at 443 K at zero O_2 pressure [38], a surface O-to-surface Ag atomic ratio of unity $(O_s/Ag_s = 1, \text{ subscript s denotes surface atoms})$ [39,40], and an assumption of hemispherical Ag clusters with a density similar to bulk Ag $(10.49 \text{ g cm}^{-3})$ [41].

O^{*} coverages during steady-state C₃H₆-O₂ reactions were quantified by O₂ chemical titrations, carried out in-situ with the same volumetric adsorption-desorption apparatus using methods described above, after treating the spent catalyst in flowing He (Linde, 99.999%, 0.5 cm³_{STP} g⁻¹ s⁻¹) for 0.5 h and evacuating the reactor for 0.5 h at 443 K. The difference between the total and reversible O₂ uptakes, extrapolated to zero O₂ pressure {(O_s/Ag_s)_{uptake}}, was subtracted from unity to obtain the O^{*} coverage during steady-state C₃H₆-O₂ reactions {(O_s/Ag_s)_{SS}, subscript SS denotes steady-state}, see details in Section S7.

2.3. Rate and selectivity assessments for oxidation reactions on Ag clusters

Rates and selectivities (defined as the percentage of C in a specific product species relative to the total amount of C in all products) of C₃H₆-O₂, C₃H₆-O₂-H_mD_{2-m}O, and C₃H₆-O₂-H_mD_{2-m}O-H_pD_{2-p}O₂ (m, p = 0, 1, or 2) reactions were measured in a fixed bed microcatalytic quartz reactor (8.1 mm ID) operating at differential conversions. Catalyst particles (125-180 µm) were supported on a quartz frit inside the tubular reactor, which was placed in a resistively heated furnace (Bluewater Heater) equipped with a K-type thermocouple (Omega) in contact with the catalyst bed. The sample was pretreated with 0.5 $\text{cm}_{\text{STP}}^3 \text{g}^{-1} \text{s}^{-1} \text{H}_2$ (Linde, 99.999%) by heating at 0.033 K s⁻¹ to 598 K and holding for 1 h. He (Linde, 99.999%) was subsequently introduced at 0.5 $cm_{STP}^3 g^{-1} s^{-1}$ for 0.5 h before cooling to the reaction temperature (323-573 K). Reactant gas mixtures of O_2 (Linde certified standard, 5% O_2 in He), C_3H_6 (Linde, 99.95%), and balance He (Linde, 99.999%) were prepared by metering the individual gas flow rates independently with thermal mass flow controllers (Brooks, SLA5850). In selected experiments, liquid H₂O (doubly deionized, >18.2 M Ω cm) or H₂O₂ (Sigma-Aldrich, 30 wt% in H₂O) was introduced through a syringe (Scientific Glass Engineering, 0.25 mL) mounted on a syringe infusion pump (KD Scientific, KDS100) into a vaporizing zone held isothermally at 323 K, located upstream from the reactor. All gas transfer lines were held at 323 K such that $H_m D_{2-m} O$ (<1.1 kPa) and $H_p D_{2-p} O_2$ (<0.25 kPa) remained in the vapor phase. The chemical compositions of the reactor effluent stream were determined with a gas chromatograph (SRI, 8610C) equipped with molecular sieve 13X (SRI, $6' \times 1/8''$ SS) and HayeSep D (SRI, $6' \times 1/8''$ SS) packed columns installed in series (with an optional bypass around the 13X column) leading to a thermal conductivity detector (TCD), a micromethanizer, and then a flame ionization detector (FID) connected in series.

The reactions were carried out at atmospheric pressure and a space velocity of 2×10^3 cm³_{STP} g⁻¹_{cat} h⁻¹ (on 0.5 g_{cat}) for 8 h at reference conditions (0.25 kPa O₂ and between 6 and 50 kPa C₃H₆ for C₃H₆-O₂ reactions; 0.25 kPa O₂, 50 kPa C₃H₆, and 1.1 kPa H₂O for C₃H₆-O₂-H₂O reactions; 0.25 kPa O₂, 50 kPa C₃H₆, 1.1 kPa H_mD_{2-m}O, and 0.15–0.25 kPa H_pD_{2-p}O₂ for C₃H₆-O₂-H_mD_{2-m}O-H_pD_{2-p}O₂ reactions in the effluent streams were not affected by the time-on-stream (less than 5% changes over the final 2 h). Next, partial pressures of the reactants were varied systematically over the entire pressure range (0.25–5.17 kPa O₂, 2–50 kPa C₃H₆, 0–1.1 kPa H_mD_{2-m}O, 0–0.25 kPa H_pD_{2-p}O₂, balance He) in 0.5 h intervals. The reactivity remained stable, because rates decreased by less than 10% at the reference reaction conditions over the entire length of the kinetic studies (8–16 h).

Rates and selectivities of C₃H₆O-O₂ (acetone and propylene oxide) and CH₃OH-O₂ reactions were measured with the same reactor system described above. Acetone (Sigma-Aldrich, 99.9%) and propylene oxide (Sigma-Aldrich, 99.5%) were introduced into the reactant gas mixture using a He bubbler immersed in a dry ice and isopropanol (Sigma Aldrich, 99.7%) bath at 195 K. The bubbler effluent was mixed with a mixture of O₂ and He to attain the desired C₃H₆O (acetone or propylene oxide)-O₂-He feed mixtures. CH₃OH-O₂ reaction mixtures were prepared by introducing liquid CH₃OH (Sigma-Aldrich, 99.8%) through a syringe (Scientific Glass Engineering, 5 mL) mounted on a syringe infusion pump (KD Scientific, KDS100) into a vaporizing zone held isothermally at 353 K, where it was evaporated and mixed with the flowing O₂ and He stream. All gas transfer lines were held at 353 K throughout the CH₃OH-O₂ rate assessments to prevent the condensation of reactants and products.

3. Results and discussion

3.1. Equilibrium O_2 and C_3H_6 coverages on Ag/SiO₂ catalysts under conditions relevant for C_3H_6 epoxidation catalysis

Oxygen uptakes on Ag clusters at 443 K give monolayer O_t/Ag_t ratios (subscript *t* denotes total number of Ag atoms), as established previously [39,40,42], by comparing with N₂ or N₂O uptakes and with cluster diameters derived from X-ray line broadening and electron microscopy. Fig. 2 shows the irreversible oxygen uptakes, in terms of O_t/Ag_t ratios, as a function of O_2 pressure for a series of 1 and 5 wt% Ag/SiO₂ samples at 443 K. Extrapolation of these O_t/Ag_t ratios to zero O_2 pressure gives the $(O_t/Ag_t)_0$ kPa ratio that defines the monolayer coverage $(O_s/Ag_s = 1)$. This method gives 3.1, 5.1, 11.3, and 29.3 nm average Ag cluster diameters for the series of catalysts.

Fig. 3a shows the total O_t -to-surface Ag_s ratios (O_t/Ag_s) on 5.1 nm Ag clusters (5 wt% Ag/SiO₂) at 443 K. The O_t/Ag_s ratio increases from 0.16 and reaches values above 0.9 at 2 kPa. Assuming Langmuirian surfaces, these data points give the equilibrium constant for O_2 dissociative adsorption, which forms oxygen adatoms $(O^*; K_{O_2,dissociation} = K_{O_2}K_O$, where K_{O_2} and K_O are the equilibrium constants for Steps 1 and 2, respectively, in Scheme 1), of 26 ± 1 kPa⁻¹. This value, together with the entropy loss $(\Delta S_{ads,O^*},$ per oxygen adatom) of $-91 \text{ J} (\text{mol O})^{-1} \text{ K}^{-1}$, estimated by assuming the complete loss of translational and rotational degrees of freedom of $O_2(g)$ upon its dissociative adsorption, gives the average heat of O_2 dissociative adsorption $(Q_{ads,O^*} = -\Delta H_{ads,O^*}, \text{ per oxygen})$

Fig. 2. Equilibrium irreversible O_2 uptakes as the total oxygen-to-total Ag atomic ratio (O_t/Ag_t) on 3.1 (\bullet), 5.1 (\bullet), 11.3 (\bullet), and 29.3 (\bullet) nm Ag clusters (1 and 5 wt% Ag/SiO₂) at 443 K as a function of O_2 pressure (0.08–1 h dwell time).

adatom) of $55 \pm 1 \text{ kJ} \pmod{0^{-1}}$ (calculations in Section S2). This heat of atomic O* adsorption on 5.1 nm Ag clusters is slightly larger than the previously measured values of $33-52 \text{ kJ} \pmod{0^{-1}}$ on polycrystalline Ag [40,43], apparently because Ag clusters contain a larger fraction of coordinatively unsaturated corner and edge sites, which bind to O* more strongly than the terrace sites prevalent on the bulk Ag structures.

Fig. 3b shows the C₃H₆ uptake isotherm, which includes the weakly adsorbed C₃H₆* species, expressed in terms of the total C₃H₆-to-surface Ag ratio (C₃H₆,t/Ag_s) on the same catalyst (5.1 nm Ag) at 443 K. As the C₃H₆ pressure increases from 0.18 to 42 kPa, the C₃H₆* uptakes increase less than linearly from 0.005 to 0.19 ML. Both the α and β carbons of adsorbed C₃H₆ interact with a Ag atom through the C₃H₆ π orbital centered above a single Ag site [44]. The concentration of sites occupied by C₃H₆, [C₃H₆*], relates directly to C₃H₆ pressure and the concentration of uncovered Ag sites ([*]) via:

$$[C_3H_6^*] = K_{C_3H_6}[C_3H_6]^{\gamma}[*]$$
(1)

where $K_{C_3H_6}$ is the equilibrium constant of C_3H_6 adsorption (Step 6, Scheme 1); γ is a parameter capturing the adsorption behavior with its value equal to unity for Langmuirian surfaces [45]. A Langmuirian treatment of the C₃H₆ uptakes results in a poor correlation between the measured and calculated C₃H₆* coverages (regression results in Section S3), likely due to the large $C_3H_6^*$ footprint that causes repulsion between the C₃H₆* adsorbates. A treatment of these uptakes with Temkin isotherm [46], which assumes that the heat of C_3H_6 adsorption ($\Delta Q_{ads,C_2H_6}$) decreases linearly with $C_{3}H_{6}^{*}$ coverage, also does not capture the measured uptakes (in Section S3), simply because the heat of C_3H_6 adsorption does not vary linearly with C₃H₆* coverage. We utilize the Sips isotherm [47], which accounts for both the difference in heats of adsorption and the change in adsorbate coverages. This treatment assumes that the heats of C₃H₆^{*} adsorption follow an exponential distribution; it is a variation of the Freundlich isotherm that sets the total number of available sites constant [47]. The Sips isotherm sets the coefficient γ in Eq. (1) between 0 and 1 and uses this coefficient to describe these distributions. Non-linear regression of Eq. (1) as the objective function against the C₃H₆ uptakes (Fig. 3b) provides the $K_{C_3H_6}$ and γ coefficient values of 0.012 ± 0.01 kPa^{-0.78} and 0.78, respectively, at the coverages and temperature relevant for C₃H₆ epoxidation catalysis. The calculated γ value (0.78) is smaller than unity, due to strong adsorbate-adsorbate interactions among the C₃H₆^{*} surface species, even at the low coverages (0.005 and 0.19 ML). Fig. 3b also includes the predicted C₃H_{6,t}/Ag_s ratios from the Sips adsorption model.

3.2. Kinetic dependencies for C_3H_6 epoxidation and combustion on dispersed Ag clusters

 C_3H_6 and O_2 reactions on Ag/SiO₂ catalysts form C_3H_6O , the desired product, as well as side products $CO_x(x = 1 \text{ or } 2)$ and H_2O over a wide range of reactant pressures and temperatures (2–50 kPa C_3H_6 , 0.25–5.17 kPa O_2 , 323–573 K, 2 × 10³ cm³_{STP} g⁻¹_{cat} h⁻¹). The reactions may also form acrolein, propanal, and acetone, as reported previously on Ag/SiO₂ (573 K) [48], Ag/Al₂O₃ promoted with Y₂O₃ (518 K) [16], Ag-Ir/CaCO₃ (533 K) [49], and Ag-Rh/CaCO₃ (533 K) [49] catalysts. These intermediates, however, remain undetected in this work within the experimentally measurable limits (0.1 ppmv,

Fig. 3. (a) Equilibrium O^{*} uptakes (O_t/Ag_s) measured by O_2 titration (\bullet) and steady-state O^{*} coverages during $C_3H_6-O_2$ reactions on Ag catalysts (5 wt% Ag/SiO₂, 5.1 nm clusters), calculated from Eq. (5) and parameter values in Table 1 at 6 (-) and 50 (-) kPa C_3H_6 , plotted as a function of O_2 pressure at 443 K. (b) Equilibrium $C_3H_6^*$ uptakes ($C_3H_{6,t}/Ag_s$) measured by C_3H_6 titration (\blacksquare) and predicted by the Sips adsorption model (-), and steady-state $C_3H_6^*$ coverages during $C_3H_6-O_2$ reactions on Ag catalysts (5 wt% Ag/SiO₂, 5.1 nm clusters), determined using Eq. (6) and parameter values in Table 1 at 0.25 kPa O_2 (-), 0.5 kPa O_2 (-), 0.75 kPa O_2 (-), and 1 kPa O_2 (-), plotted as a function of C_3H_6 pressure at 443 K.

	Step	Elementary Reaction	Rate or Equilibrium Constant
а	1	$O_2 + * \bigoplus O_2 *$	K_{0_2}
	2	$O_2^* + * \rightleftharpoons 2O^*$	$k_{\mathrm{O}_{f}}, k_{\mathrm{O}_{r}}, K_{\mathrm{O}}$
b	3	$H_2O + * \textcircled{H_2O*}$	$K_{ m H_2O}$
	4	$H_2O^* + O_2^* \rightarrow OOH^* + OH^*$	k _{ooh}
	5	$H_2O^* + O^* \stackrel{\text{\tiny{def}}}{=} 2OH^*$	K _{OH}
с	6	$C_3H_6 + * \bigoplus C_3H_6 *$	$K_{ m C_3H_6}$
	7	$C_{3}H_{6}^{*} + O^{*} \oplus C_{3}H_{6}^{-}O^{*}(OMC) + *$	$K_{ m C_3H_6-O^*}$
	8	$C_{3}H_{6}-O^{*}(OMC) C_{3}H_{6}O^{*}(PO)$	$k_{\mathrm{C_{3}H_{6}O^{*}}}$
	9	$C_3H_6O^*$ (PO) $\longrightarrow C_3H_6O + *$	$k_{{ m C_{3}H_{6}O^{-*}}}$
d	10	$C_3H_6^* + O^* \rightarrow C_3H_5^* (allyl) + OH^*$	$k_{\mathrm{C_3H_6-O^*}}$
	11	$C_3H_6^* + OOH^* \longrightarrow C_3H_5^* (allyl) + OOH_2^*$	$k_{\mathrm{C_{3}H_{6}} ext{-OOH}*}$
	12	$OOH_2^* \longrightarrow O^* + H_2O$	k_{OOH_2}
	13	CO* 40► CO + *	$K_{ m co}$
	14	$CO^* + O_2^* \longrightarrow CO_2^* + O^*$	$k_{\rm CO_2}$
	15	$CO_2^* \Leftrightarrow CO_2 + *$	$K_{\rm CO_2}$

Scheme 1. A proposed sequence of elementary steps during (a) O_2 and (b) H_2O activation, and C_3H_6 (c) epoxidation and (d) combustion reactions on Ag clusters (* denotes a Ag site, \longrightarrow denotes an irreversible step, $-A_{\rightarrow}$ a rate determining step, $\frac{1}{4B^2}$ a quasi-equilibrated step, and $\xrightarrow{}$ a reversible step. K_j is the equilibrium constant, k_j or k_{j_j} is the forward rate constant, and k_{j_i} is the reverse rate constant for the respective elementary reaction. Subscript *j* denotes the specific reaction.)

which corresponds to a carbon selectivity of 0.01%) under all reaction conditions.

Fig. 1a and 1b compare the temperature effects (362–613 K) on the first-order rate coefficients ($k_i = r_i [C_n H_{2n}]^{-1}$, where r_i is the sitetime-yield of species i, $i = C_n H_{2n}$ O or CO_x, n = 2 or 3) for C₃H₆ epoxidation and combustion reactions occurring on 3.1 and 5.1 nm Ag clusters with those reported for $C_n H_{2n}$ on supported Ag catalysts [13,16,17], polycrystalline Ag [14,15], and well-defined single crystal Ag surfaces [18]. At similar conditions, the $k_{C_3H_6O}$ (Fig. 1a) and k_{CO_x} (Fig. 1b) values in this work are within one order of magnitude of other literature measurements.

Fig. 4a and 4b show the C₃H₆O and CO_x site-time-yields ($r_{C_3H_6O}$ and r_{CO_x}), respectively, as a function of O₂ pressure (0.25–5.17 kPa), for constant C₃H₆ pressures on 5.1 nm Ag clusters (5 wt% Ag/SiO₂) at 443 K. The selectivities towards C₃H₆O are highest (80%) at the lowest O₂ (0.25 kPa) and largest C₃H₆ (50 kPa) pressures, but their values decrease to 28% as the O₂ pressure increases (to 5.17 kPa) and the C₃H₆ pressure decreases (to 6 kPa). Over the entire operating O₂ and C₃H₆ pressure ranges, the ratios for CO-to-CO₂ site-time-yields, r_{CO} (r_{CO_2})⁻¹, remain constant at 0.20 ± 0.05. C₃H₆O and CO_x site-time-yields (r_i , $i = C_3H_6O$ or CO_x) vary with O₂ and C₃H₆ pressures (denoted as [O₂] and [C₃H₆]), according to:

$$r_{i} = k_{\text{eff},i} [O_{2}]^{\alpha_{i}} [C_{3}H_{6}]^{\beta_{i}}$$
(2)

where $k_{\text{eff},i}$ is the effective rate constant, and α_i and β_i are the apparent reaction orders with respect to O₂ and C₃H₆, respectively, for the site-time-yield of species *i*.

 C_3H_6O site-time-yields (Fig. 4a) from the epoxidation reaction increase much less than linearly with O_2 and become insensitive to O_2 with increasing O_2 pressures. At 6 kPa C_3H_6 , the apparent O_2 order ($\alpha_{C_3H_6O}$) varies from 0.2 ± 0.1 to 0 ± 0.05. The C_3H_6O sitetime-yields also increase less than linearly with C_3H_6 ; here, the reaction order with respect to propylene, $\beta_{C_3H_6O}$, decreases from 0.7 to 0.3 (±0.1), as the C_3H_6 pressure increases from 6 to 50 kPa. The O_2 dependence is consistent with that reported on polycrystalline Ag, where $\alpha_{C_3H_6O}$ decreases from 1 to 0 as the O_2 pressure increases from 2.7 to 16 kPa (at 3.7 kPa C₃H₆, 440 K) [14], but the C₃H₆ dependence deviates from previous results, where the C₃H₆O site-time-yields remain insensitive to C₃H₆ pressure ($\beta_{C_3H_6O} = 0, 0.8-7$ kPa C₃H₆, 17 kPa O₂, 431 K) [14].

CO_x site-time-yields (Fig. 4b) from the parallel combustion reactions increase less than linearly with O₂ pressures ($\alpha_{CO_x} = 0.55 \pm 0.05$) and decrease marginally with increasing C₃H₆ pressures ($\beta_{CO_x} = -0.10 \pm 0.05$). These dependencies are similar to those on polycrystalline Ag (431–440 K), on which α_{CO_x} decreases from 1 to 0 while the CO_x site-time-yields remain insensitive to C₃H₆ ($\beta_{C_3H_6O} = 0$) for all C₃H₆ pressures [14]. These different O₂ dependencies between the C₃H₆O and CO_x site-time-yields suggest that either the types of oxidants or the molecularity of oxygen involved in the elementary steps leading to the kinetically relevant step, or both of these items, differ between the reactions that form C₃H₆O and CO_x.

3.3. Proposed elementary steps and rate expressions for C_3H_6 epoxidation and combustion on dispersed Ag clusters

A plausible reaction mechanism for C₃H₆ oxidation must describe both the observed rate dependencies for C₃H₆O and CO_x site-time-yields. In order to connect the O* coverages to rates, we compare the profiles of O* coverages at chemical equilibrium (without reactions) and of C₃H₆O and CO_x site-time-yields, measured at the lowest C₃H₆ pressure of 6 kPa, as a function of O₂ pressure in Fig. 4c. The profile of C_3H_6O site-time-yields ($r_{C_3H_6O}$) closely resemble that of equilibrium O* coverages. At this low C3H6 pressure, Ag surfaces are largely free of C₃H₆ derived intermediates (<0.05 ML, Fig. 3b). Both the C_3H_6O site-time-yields and equilibrium O* coverages initially increase rapidly and then become nearly constant as the O₂ pressure increases. These similar profiles suggest the direct involvement of oxygen adatoms (O^*) in C_3H_6 epoxidation, as proposed previously for C₂H₄-O₂ reactions from kinetic [19] and surface science [19,21] studies. In fact, DFT studies suggest that atomic oxygen inserts into the C=C bonds of adsorbed C_2H_4 [23] or C_3H_6 [24–27], forming oxametallacycle intermediates,

as the precursors to $C_nH_{2n}O$. At higher C_3H_6 pressures and larger $C_3H_6^*$ coverages (Fig. 3b), the profiles of C_3H_6O rate dependencies (Fig. 4a) appear to deviate from that of the equilibrium O* contents (Fig. 4c), because $C_3H_6^*$ competitively adsorbs at and decreases the number of available Ag sites for O* adsorption.

The C_3H_6O kinetic dependencies (Fig. 4a), the direct correlation between C₃H₆O site-time-vields and equilibrium O^{*} contents on surfaces largely free of $C_3H_6^*$ (Fig. 4c), and previous DFT studies [23-27] led us to propose that C_3H_6 epoxidation occurs via a series of elementary steps shown in Scheme 1. O₂ molecules may adsorb as diatomic (O_2^*) or monoatomic (O^*) species on Ag clusters [21,24,39,40,50–53] in quasi-equilibrated steps (Steps 1 and 2). Low energy electron diffraction (LEED) on Ag(1 1 1) [52] and Ag $(1\ 1\ 0)$ [51] has detected these two discrete O_2^* and O^* adsorption configurations, isolated and identified with sequential temperature programmed desorption experiments [51,52]. Diatomic oxygen species prefer to bind in di- σ states, while oxygen adatoms settle in threefold fcc sites as their most stable adsorption configurations on Ag(1 1 1) surfaces [50]. Next, as shown in Scheme 1c, a $C_3H_6(g)$ molecule adsorbs at an Ag site (*) as $C_3H_6^*$ (Step 6) and then reacts with O* in a quasi-equilibrated step to form the oxametallacycle (Ag-O-CH₂-CHCH₃-Ag, OMC, Step 7). Finally, the second C-O bond formation (Step 8) and the sequential desorption (Step 9) lead to C_3H_6O , completing the catalytic cycle.

In contrast to the C_3H_6O site-time-yields and O^{*} coverages, CO_x site-time-yields (r_{CO_x}) depend much more strongly on O₂ pressure (Fig. 4a–c). The r_{CO_x} values increase with O₂ pressures, even at the higher O₂ pressures (0.50-5.17 kPa) that lead to O* coverages at near saturation (0.82–0.97 ML, Fig. 4c). Next, the rate dependence on O_2 at low C_3H_6 pressures does not resemble that of the equilibrium O* coverages. These differences, taken together, suggest the involvement of a separate reactive oxygen species in CO_x formation than in C_3H_6 epoxidation. This oxygen species appears to form preferentially at higher O_2 pressures and high O^* coverages. At high O_2 pressures, small amounts of diatomic oxygen (O_2^*) tend to adsorb and remain on Ag surfaces, as predicted from the small equilibrium constant for O_2^* adsorption (K_{O_2}) of 3.4×10^{-6} kPa⁻¹ at 443 kPa (estimation in Section S2). These O_2^* ($O^IO^{II^*}$) molecules may react with the H_2O^* , a product of combustion, and form O^IO^{II} -H* through a H transfer step (Step 4), as proposed from DFT calculations on Ag(1 1 1) [54]. The $O^I O^{II} H^*$ molecules adsorb in bridge configurations at Ag sites through the O^I atom, according to DFT calculations on Ag(1 1 1) [50,54]. The parallel H transfer reaction from H_2O^* to O^* produces two OH^{*} species (Step 5).

We postulate that both the oxygen adatoms (0^*) and the hydroperoxyl species (OOH*) act as effective H abstractors in C–H bond activation, a step in C_3H_6 combustion, according to Schemes 1d and 2. Later in Section 3.5, we probe and confirm the involvement of OOH^{*} as a more effective oxidant than O^* , O_2^* , and OH^* by comparing rates with $C_3H_6-O_2$, $C_3H_6-O_2-H_2O$, and $C_3H_6-O_2-H_2O-H_2O_2$ mixtures. The CO_x kinetic dependencies (Fig. 4b) are consistent with C_3H_6 combustion reactions that proceed via C-H bond cleavage by either O* or OOH* (Steps 10-11), the former involves the $C_3H_6^*-O^*$ reaction and the latter involves the H transfer from H_2O^* to O_2^* as the kinetically relevant steps in Steps 10 and 4 of Scheme 1. At the entrance of the reactor, the O^{*} assisted C–H bond cleavage is the sole C₃H₆ combustion pathway since the H₂O pressure is zero. As the H₂O concentration increases along the reactor bed, the rates of autocatalytic OOH* formation and OOH* assisted C-H cleavage increase (Scheme 2).

The C₃H₆ combustion pathway begins with quasi-equilibrated $C_{3}H_{6}$ adsorption (Step 6), followed by $C_{3}H_{6}^{*}$ reactions with either O* or OOH*, undergoing C-H scission and forming an allyl intermediate (C₃H₅*) along with OH* or OOH₂* in Steps 10 or 11, respectively. The sequential allyl oxidation and OOH₂* decomposition steps lead to CO, CO₂, and H₂O (Steps 12-15). The identity of the dominant kinetically relevant step proposed here for olefin combustion deviates from those derived from kinetic [14,18,19] and surface science [12,18,19,21] studies on Ag single crystals and polycrystalline surfaces, as well as from DFT calculations {Ag(100), Ag(111), and Al₂O₃ supported Ag₁₉ clusters} [24–27]. These previous studies suggest a kinetically relevant C-H bond activation step assisted solely by an atomic [21] or molecular [14] oxygen, but such proposals contradict the CO_x rate dependencies in Fig. 4b and their correlation to the O* coverages in Fig. 4c. These previous studies, however, do agree with the fact that the C–H cleavage in $C_3H_6^*$ results in the formation of a surface allyl intermediate. We surmise that these mechanistic differences with respect to the kinetic relevance of steps that form CO_x between the literature and the proposed one in Scheme 1d are results of different reaction conditions and C₃H₆ conversion levels, as these factors alter the O₂^{*} and H₂O^{*} coverages and, in turn, the OOH^{*} formation rates. The previously reported rate dependencies [14] are consistent with the mechanistic route proposed in Schemes 1 and 2. We stress that, although the formation of OOH* species remains undetected experimentally, likely because of their low concentrations, its formation as a stable adsorbate has been well-studied with DFT and their formation from the H_2O^* and O_2^* reaction is

Scheme 2. A proposed sequence of elementary steps for OOH* and O* assisted C₃H₆ combustion reactions on Ag clusters (-/++ denotes a rate determining step.)

favorable on Ag(111) surfaces $[50,\!54]$ and Au_{10} clusters on $TiO_2(110)$ supports [55].

These elementary steps, the assumption of Langmuirian adsorption for O_2^* , O^* , H_2O^* , and OH^* , and the non-ideal C_3H_6 adsorption behavior captured by the Sips isotherm, lead to the following C_3H_6O ($r_{C_3H_6O}$) and CO_x (r_{COx}) site-time-yields, as derived in Section S5 of the Supplementary Information:

fractional coverages of 0.10–0.24, 0.0068–0.23, 3×10^{-4} –1.8 × 10^{-2} , 3.4×10^{-4} –2.2 × 10^{-3} , 5.6×10^{-7} –1.3 × 10^{-5} , and 6.7×10^{-9} –6.8 × 10^{-8} , respectively, during C₃H₆-O₂ catalysis. These results indicate that C₃H₆-O^{*}, OH^{*}, O₂^{*}, and H₂O^{*} coverages are insignificant. Omitting the terms associated with C₃H₆-O^{*}, OH^{*}, O₂^{*}, and H₂O^{*} in Eqs. (3a) and (3b) results in Eqs. (4a) and (4b):

where $k_{C_3H_6O^*}$, $k_{C_3H_6-O^*}$, and k_{OOH} are the rate constants for $C_3H_6-O^*$, $C_3H_6^{*-O^*}$, and $H_2O^{*-}O_2^{*}$ reactions, respectively; K_{O_2} , K_0 , $K_{C_3H_6}$, $K_{C_3H_6-O^*}$, K_{H_2O} , and K_{OH} are the equilibrium constants for O_2 adsorption, O_2^{*} dissociation, C_3H_6 adsorption on Ag (*), $C_3H_6^{*-}O^{*}$ reactions, H_2O adsorption, and H_2O^{*} dissociation, respectively, as defined in Scheme 1. The denominators of these rate equations give the relative abundances of the various surface species relative to the unoccupied sites (*) with their identities indicated underneath the respective terms. Adsorption enthalpies and entropies provide the estimated $K_{O_2}K_O$, $K_{C_3H_6}$, $K_{C_3H_6-O^*}$, $K_{H_2O}K_{OH}$, K_{O_2} , and K_{H_2O} values of 4.7×10^{-2} , 6.8×10^{-3} , 3.2×10^{-3} , 1.6×10^{-3} , 3.4×10^{-6} , and 7.4×10^{-6} kPa⁻¹, respectively, at 443 K (calculations in Section S2). These values, together with the O_2 , C_3H_6 , and H_2O pressures (0.25–5.17 kPa O_2 , 6–50 kPa C_3H_6 , 0.0015– 0.011 kPa H_2O), give O^* , $C_3H_6^*$, $C_3H_6-O^*$, OH^* , O_2^* , and H_2O^*

Table 1

Rate constant, equilibrium constant, and γ parameter values determined from non-linear regression of rate data measured during C₃H₆-O₂ reactions (Fig. 4a and b) with the proposed rate equations (Eqs. (4a) and (4b)) on dispersed Ag clusters (5 wt% Ag/SiO₂, 5.1 nm clusters) at 443 K.

Parameter	$k_{C_3H_6O^*}K_{C_3H_6}K_{C_3H_6-O^*}$ [kPa ⁻¹ h ⁻¹]	$k_{C_3H_6-0^*}$ [h ⁻¹]	$k_{\rm OOH} K_{\rm H_2O} K_{\rm O_2} \ [\rm kPa^{-2} \ h^{-1}]$	$K_{0_2}K_0$ [kPa ⁻¹]	$K_{C_3H_6}$ [kPa ^{-0.40}]	γ
Value	$5.6 \times 10^{-3} \pm 0.2 \times 10^{-3}$	0.043 ± 0.003	$8.4\times10^2\pm1.0\times10^2$	19±2	0.074 ± 0.013	0.40 ± 0.01

Eq. (4a) predicts that the reaction orders for C_3H_6O formation are positive and less than unity with O_2 and C_3H_6 ($0 \le \alpha_{C_3H_6O} \le 0.5$, $0 \le \beta_{C_3H_6O} \le \gamma$, where $0 \le \gamma \le 1$ is defined in Eq. (1). Eq. (4b) predicts that the order for CO_x formation is less than unity with O_2 and positive or negative with C_3H_6 ($0 \le \alpha_{CO_x} \le 1, -2\gamma \le \beta_{CO_x} \le \gamma$, where $0 \le \gamma \le 1$). These predictions are consistent with the observed rate dependencies in Fig. 4a and b and with the calculated value of γ (0.78) from the equilibrium C_3H_6 uptakes in Fig. 3b.

These rate equations (Eqs. (4a) and (4b)) and the consideration of an integral plug flow reactor lead to a kinetic model that captures both the dependencies of C_3H_6O and CO_x site-time-yields. Non-linear regressions of all the rate data in Fig. 4a and b with the kinetic model give the values and standard deviations for the groupings of kinetic and thermodynamic parameters, $k_{C_3H_6O^*}K_{C_3H_6}$ $K_{C_{3}H_{6}-O^{*}}$, $k_{C_{3}H_{6}-O^{*}}$, $k_{00H}K_{H_{2}O}K_{O_{2}}$, $K_{O_{2}}K_{O}$, $K_{C_{3}H_{6}}$, and γ , as summarized in Table 1. Each parameter that appears in the numerator $(k_{C_{3}H_{6}O^{*}}K_{C_{3}H_{6}}K_{C_{3}H_{6}-O^{*}}, k_{C_{3}H_{6}-O^{*}}, k_{OOH}K_{H_{2}O}K_{O_{2}}, K_{O_{2}}K_{O}, and \gamma)$ of Eqs. (4a) and (4b) has a standard error of less than 12% and is highly sensitive to the variation of its value. For example, a 20% change in their values increases the residual sum of squares between the predicted and measured site-time-yields by at least 250%, as demonstrated in Section S6 of the Supplementary Information. $K_{C_2H_c}$ appears only in the denominator and determines the small but not insignificant $C_3H_6^*$ coverages (0.01–0.10 ML). The $K_{C_3H_6}$ value has a standard error of 16% and is insensitive to perturbations: a 20% variation in the $K_{\rm C_3H_6}$ value increases the residual sum of squared errors by at most 0.4%. Fig. 4a and b compares the measured and predicted site-time-yields and Fig. 5 shows the parity plot between them. The fraction of CO_x produced via the OOH* assisted combustion pathway (Scheme 2) is between 0.71 and 0.95 under all inlet conditions. We also considered that the OOH^{*} formation does not occur ($k_{OOH} = 0$) and the O^{*} assisted combustion (Scheme 2) reaction is the only reaction that leads to CO_x

Fig. 5. Measured C_3H_6 (\diamondsuit) and CO_x (\bullet) site-time-yields (per exposed Ag atom, 5 wt% Ag/SiO₂, 5.1 nm clusters) plotted against predicted site-time-yields from Eqs. (4a) and (4b) and parameters in Table 1 at 0.25–5.17 kPa O₂ and 6–50 kPa C₃H₆ (443 K, 2 × 10³ cm³_{STP} g⁻¹_{ca1} h⁻¹).

products, but such as a case cannot describe the observed CO_x rate dependencies, as shown in the poor parity plot in Fig. S4 of the Supplementary Information.

Next, we check the consistency of our model by comparing the thermodynamic values derived from the kinetic model (Table 1) to the reported values. The equilibrium constant for O₂ dissociation, $K_{O_2}K_{O_0}$, of $19 \pm 2 \text{ kPa}^{-1}$, together with the entropy losses {-91 J (mol O)⁻¹ K⁻¹, calculations in Section S2}, gives the average heat of O* adsorption of $54 \pm 1 \text{ kJ}$ (mol O)⁻¹ during steady-state reactions at 0.62–0.90 ML O* coverages, in agreement with those derived from equilibrium O₂ uptakes {Fig. 3a, $55 \pm 1 \text{ kJ}$ (mol O)⁻¹ for 0.16–0.99 ML O* coverages}. We also compute the fractional O* coverage during steady-state C₃H₆-O₂ reactions:

$$\frac{[O^*]}{[Ag_s]} = \frac{K_{O_2}^{0.5} K_{O_2}^{0.5} [O_2]^{0.5}}{1 + K_{O_2}^{0.5} K_{O_2}^{0.5} [O_2]^{0.5} + K_{C_3H_6} [C_3H_6]^{\gamma}}$$
(5)

Eq. (5), together with the parameters in Table 1, gives the O* coverages during steady-state C₃H₆-O₂ reactions on 5.1 nm Ag clusters at 443 K. Fig. 3a compares these O* coverages during steady-state reactions to the equilibrium O* contents measured in the absence of C₃H₆. O* coverages during steady-state reactions are smaller than those at chemical equilibrium (without C_3H_6), simply because C₃H₆^{*} species displace some of the O^{*} atoms. The O* coverages increase sensitively with O₂ pressure but remain largely unperturbed by changing propylene pressure. Finally, we verify the O^* coverages independently by O_2 chemical titrations following the steady-state reactions (method and coverage calculations in Section S7). Table 2 compares the measured O* coverages from O_2 chemical titrations and those calculated from Eq. (5) using the regressed parameters. These experimentally titrated O* coverages coincide and correlate with those calculated from the proposed kinetic and thermodynamic coefficients.

On the other hand, the Sips isotherm parameter, γ , provides information about the nature of C_3H_6 adsorption during steady-state catalysis. The regressed γ value of 0.40 is smaller than that measured during equilibrium C_3H_6 uptakes (0.78, Fig. 3b, without O^{*}), indicating that C_3H_6 adsorption deviates from the Langmuirian behavior ($\gamma = 1$) to a much larger extent during steady-state reactions, during which surfaces remain largely covered with O^{*}, than those largely uncovered and contacted only to C_3H_6 . This difference reflects an increase in repulsive interactions between $C_3H_6^*$ and other adsorbates at high O^{*} coverages (0.62–0.90 ML) during reactions. Furthermore, the calculated fractional $C_3H_6^*$ coverages during steady-state $C_3H_6-O_2$ reactions are:

Table 2

 O^* coverages (O*/Ag_s) on dispersed Ag clusters (5 wt% Ag/SiO₂, 5.1 nm clusters) during steady-state C_3H_6 -O₂ reactions at 443 K predicted from Eq. (5) and measured with O₂ chemical titration after reactions.

Test	Reaction Conditions		Predicted O*/Ag _s	Measured O*/Ag _s	
	O ₂ [kPa]	C ₃ H ₆ [kPa]	(Eq. (5))	with O ₂ chemical titration	
1	0.25	50	0.62	0.48 ± 0.05	
2	0.50	6	0.73	0.87 ± 0.02	
3	1.75	30	0.82	0.84 ± 0.03	
4	2.75	6	0.86	0.86 ± 0.03	
5	3.30	40	0.86	0.88 ± 0.02	
6	3.85	30	0.87	0.88 ± 0.04	

$$\frac{[C_{3}H_{6}^{*}]}{[Ag_{s}]} = \frac{K_{C_{3}H_{6}}[C_{3}H_{6}]^{\gamma}}{1 + K_{02}^{0.5}K_{0}^{0.5}[O_{2}]^{0.5} + K_{C_{3}H_{6}}[C_{3}H_{6}]^{\gamma}}$$
(6)

As shown in Fig. 3b, the $C_3H_6^*$ coverages during the steady-state reactions remain smaller than equilibrium (without O₂), because of competitive O^{*} adatoms and the lateral repulsive interactions between O^{*} and $C_3H_6^*$, as captured by the Sips coefficient.

3.4. Reversibility of O_2 activation during C_3H_6 epoxidation inferred from the relative reactivities and kinetic dependencies during the oxidation of C_1 and C_3 oxygenates (methanol, acetone, and propylene oxide) and C_nH_{2n} olefins

We probe the reversibility of O_2 activation during C_3H_6 epoxidation, by comparing the magnitude and reaction orders for the net O_2 consumption rates with those during C_2H_4 , CH_3OH , C_3H_6 , and C_3H_6O (acetone and propylene oxide) oxidation. In general, the chemical equation for the reactions between O_2 and one of these reductants, R, leads to CO_2 , H_2O , and product P:

$$v_{\rm R}R + v_{\rm O_2,R}O_2 \rightarrow v_{\rm CO_2,R}CO_2 + v_{\rm H_2O,R}H_2O + v_{\rm P,R}P$$
 (7)

where v_j is the stoichiometric coefficients for species *j*. The net rates of oxygen consumption ($r_{0_2,R}$) relate to those of reductant *R* consumption (r_R) via the reaction stoichiometries $v_{0_2,R}$ and v_R :

$$r_{\mathrm{O}_{2},\mathrm{R}} = \frac{v_{\mathrm{O}_{2},\mathrm{R}}}{v_{\mathrm{R}}} r_{\mathrm{R}} = k_{eff,\mathrm{R}} [\mathrm{O}_{2}]^{\varepsilon_{\mathrm{R}}} [\mathrm{R}]^{\phi_{\mathrm{R}}}$$

$$(8)$$

where $k_{eff,R}$ is the effective rate constant for oxygen consumption, [O₂] and [*R*] are the oxygen and reductant pressures, and ε_R and ϕ_R are their reaction orders, respectively.

Table 3 summarizes the oxygen consumption rates and their rate dependencies for the various reductants R on Ag clusters at 443 K. Over 0.25–134 kPa O₂, oxygen consumption rates for these reductants vary by five orders of magnitude {0.013-430 mol (mol-Ag_s h)⁻¹}. The largest oxygen consumption rates during CH₃-OH oxidation (detailed results in Section S8) lead to rapid O* scavenging from the Ag surfaces, thus reducing the O* coverages to below equilibrium. For this reason, the reactivity is a singlevalued function of the O₂/R ratio, as illustrated previously [56]. Similarly, the rate dependencies for C₂H₄-O₂ reactions also vary with the operating O₂/R ratio (in Fig. S8) on 200 nm Ag clusters [57]. During CH₃OH and C₂H₄ oxidation at low O₂/R ratios, the apparent reaction orders with respect to O₂ and R are between 0.81 and 1 and between -0.31 and 0.19, respectively [56-58]. These rate dependencies indicate that the kinetically relevant steps for oxidation are O_2 activation on bare Ag sites (*). In both CH₃OH-O₂ and C₂H₄-O₂ reactions, CH₃OH and C₂H₄ scavenge O* adatoms effectively and decrease the O* coverages to below equilibrium, and as a result, the O₂ activation step is irreversible.

Comparing the $r_{O_{2,R}}$ values in Table 3, the oxygen consumption rates during C₃H₆, acetone, and propylene oxide oxidation are two to five orders of magnitude smaller than those during CH₃OH and C_2H_4 oxidation. These relative rate magnitudes confirm that $O_2(g)$ may dissociate and then recombine much more rapidly than the rate of O* removal, as these reductants are less effective O* scavengers than C₂H₄ and CH₃OH. We also measured the oxygen consumption rates during propylene, acetone, and propylene oxide combustion on 5.1 nm Ag clusters and report them in Fig. 6a and b as a function of O₂ and reductant pressures, respectively, at 443 K. The rate dependencies on O₂ are much smaller than unity (between 0.31 and 0.53, Table 3). These dependencies, taken together with the much smaller rates of $O_2(g)$ consumption than those during CH₃OH and C₂H₄ oxidation (r_{O_2,CH_3OH} , $r_{O_2,C_2H_4} >>$ $r_{O_2,C_3H_6},\ r_{O_2,C_3H_6O\ (acetone)},\ r_{O_2,C_3H_6O\ (propylene\ oxide)}),\ suggest\ that\ the\ O_2$ dissociation step is kinetically-irrelevant during propylene, acetone, and propylene oxide oxidation and therefore must be quasi-equilibrated.

Despite their lower than first-order dependence on O₂ pressures, the oxygen consumption rates during C₃H₆ combustion and C₃H₆O (acetone and propylene oxide) oxidation remain insensitive to reductant pressures at 443 K, with β_{CO_x} , $\phi_{C_3H_6O}$ (acetone), and $\phi_{C_3H_6O}$ (propylene oxide) range between -0.10 and 0.04 (rate data in Fig. 4b and 6b). These dependencies suggest that the reductant activation step is also kinetically-irrelevant in propylene combustion and in acetone and propylene oxidation. The weak dependencies on O₂ pressure ($\alpha_{CO_x} = 0.55 \pm 0.05$) and the fact that Ag cluster surfaces remain covered predominantly with O* indicate that the formation of another oxygen derived species such as OOH*, rather than O*, is the kinetically-relevant step for C₃H₆ combustion.

3.5. Catalytic effects of reactive oxygen species derived from O_2 , H_2O , and H_2O_2 oxidants on turnover rates and selectivities during $C_3H_6-O_2$ reactions on Ag clusters

Here, we probe the potential catalytic involvement of four oxidant species, namely O^{*}, O₂^{*}, OH^{*}, and OOH^{*}, formed from the interconversion between O₂ and H₂O. Their coverages on Ag cluster surfaces and their catalytic roles in activating $C_yH_{2y-z}^*$ (y = 1, 2, or3 and z = 0, 1, or 2) intermediates dictate the ultimate fate of C_3H_6 in epoxidation reactions.

Table 3

Oxygen consumption rates and kinetic dependencies during the reaction between R {R = C₃H₆, C₃H₆O (acetone or propylene oxide), C₂H₄, or CH₃OH} and oxygen on Ag at 443 K.

Reductant (R)	Oxygen consumption turnover rate at 443 K $(r_{0_2,R}^a)$ [mol (mol-Ag _s h) ⁻¹]	Apparent reaction order of $O_2(\epsilon_R^a)$	Apparent reaction order of R $(\phi_{R}{}^{a})$
C ₃ H ₆ ^b	0.02–0.12 ^c	0.53 ± 0.10	-0.07 ± 0.05
C ₃ H ₆ O (acetone) ^b	0.025–0.036 ^d	0.31 ± 0.05	-0.03 ± 0.05
C ₃ H ₆ O (propylene oxide) ^b	0.013–0.035 ^e	0.36 ± 0.05	0.04 ± 0.05
$C_2H_4^{f}$	2–47 ^g	0.98 ± 0.03^{g}	-0.31 ± 0.03^{g}
		0.21 ± 0.04^{h}	1.00 ± 0.03^{h}
CH₃OH ^b	40-430 ⁱ	0.49 ± 0.04	0.35 ± 0.04

 ${}^{a}_{\nu} r_{O_{2},R} = \frac{v_{O_{2},R}}{v_{R}} r_{R} = k_{eff,R}[O_{2}]^{\varepsilon_{R}}[R]^{\phi_{R}}(Eq.(8)).$

^b 5 wt% Ag/SiO₂, 5.1 nm clusters.

 $^{c}\,$ 6–50 kPa $C_{3}H_{6},\,0.25$ –5.17 kPa $O_{2},\,443$ K, $2\times10^{3}\,cm_{STP}^{3}\,g_{cat}^{-1}\,h^{-1}.$

 d 0.093–0.25 kPa C_3H_6O (acetone), 1–3.5 kPa O_2, 443 K, 2 \times 10 3 cm $_{STP}^{3}$ g_{cat}^{-1} $h^{-1}.$

^e 0.047–0.80 kPa C₃H₆O (propylene oxide), 0.25–3.5 kPa O₂, 443 K, 2×10^3 cm³_{STP} g⁻¹_{cat} h⁻¹.

 $^{\rm f}$ Rate data from Ref. [57] are provided in Section S9. 8.1 wt% Ag/Al_2O_3, 200 nm clusters.

^g 7–134 kPa C₂H₄, 6–53 kPa O₂, O₂/C₂H₄ < 1, 493 K, 2.3 × 10³ cm³_{3TP} g⁻¹_{cat} h⁻¹. Rate data from Ref. [57]. Rates measured under apparent O₂ reaction orders of 0.98 were extrapolated to 443 K using E_a = 96 kJ mol⁻¹ [39].

^h 3–7 kPa C₂H₄, 80–134 kPa O₂, O₂/C₂H₄ > 10, 493 K, 2.3×10^3 cm³_{STP} g⁻¹_{cat} h⁻¹. Rate data from Ref. [57].

 i 1–4 kPa CH₃OH, 0.25–5 kPa O₂, 443 K, 3 \times 10⁵ cm_{STP}^3 g_{cat}^{-1} h^{-1}. Rate data are provided in Section S8.

Fig. 6. Dependence of oxygen consumption turnover rates ($r_{O_2,R}$, per exposed Ag atom) during propylene (\blacklozenge), acetone (\Box), and propylene oxide (\blacklozenge) combustion on (a) O_2 pressure (with 6 kPa propylene, 0.1 kPa acetone, or 0.85 kPa propylene oxide) and (b) reductant pressure (with 2 kPa O_2) on dispersed Ag clusters (5 wt% Ag/SiO₂, 5.1 nm clusters) at 443 K ($2 \times 10^3 \text{ cm}_{3TP}^3 \text{ g}_{cat}^{-1} \text{ h}^{-1}$).

 O_2 adsorbs as O_2^* and O^* on Ag(1 1 1) [52] and Ag(1 0 0) [51], as detected by low-energy electron diffraction (LEED) spectra and isolated using temperature programmed experiments [51,52]. H₂O, a by-product from C₃H₆ combustion, may react with O* to form OH* or with O_2^* to form OOH^{*} and OH^{*} species. LEED spectra provide the evidence that OH^* forms on O^* covered $Ag(1 \ 1 \ 0)$ [59] surfaces during H₂O adsorption, while DFT calculations demonstrate that OH* and OOH* exist as stable adsorbates on Ag(111) surfaces [50,54]. These H₂O derived species may act as oxidants during oxidation reactions. OOH* provides a faster alternative pathway in CO oxidation, according to DFT calculations on Au₁₀ clusters on TiO₂ $(1\ 1\ 0)$ [55]. In this pathway, the O^{II} atom of O^IO^{II}H^{*} acts as a nucleophile during its insertion into CO* to form OCO^{II}H*, which later decomposes into CO₂ [55]. This role of the O^{II} atom of O^IO^{II}H^{*} is similar to its involvement in C₃H₆ combustion, where it participates in the nucleophilic C-H bond cleavage of C₃H₆* to form $C_{3}H_{5}^{*}$ and $H_{2}O^{II}$ (Steps 11–12, Scheme 1). Based on this knowledge, we propose that O^* , O_2^* , OH^* , and OOH^* oxidants may exist during $C_3H_6-O_2$ reactions, because H_2O is a side product.

Next, we probe the relative reactivities of O*, O2*, OH*, and OOH^{*} by examining C_3H_6 reactions with O_2 , O_2-H_2O , or O_2-H_2O - H_2O_2 mixtures, because these mixtures lead to different O^* , O_2^* , OH^* , and OOH^* coverages. Fig. 7 shows the CO_x site-time-yields as a function of C_3H_6 pressure during C_3H_6 reactions with O_2 , O_2 - H_2O , and $O_2-H_2O-H_2O_2$ mixtures at 323 K. CO_x site-time-yields in $C_3H_6-O_2$ mixtures (2–50 kPa C_3H_6 , 0.25 kPa O_2), which range from 5×10^{-4} to 8×10^{-4} mol (mol-Ags h)^{-1}, reflect the reactivity of O* covered Ag clusters with small ${\rm O_2}^*,$ OH*, and OOH* coverages, because of the low H_2O pressures (10⁻⁴ kPa). CO_x site-timeyields with 2-50 kPa C₃H₆-0.25 kPa O₂-1.1 kPa H₂O mixtures are between 0.001 and 0.002 mol (mol-Ag_s h)⁻¹. These values are larger than those in C₃H₆-O₂ mixtures because of the larger H₂O pressure (1.1 kPa vs. 10^{-4} kPa in C₃H₆-O₂ mixtures) and the concomitant larger OH* and OOH* coverages. These higher rates with H₂O suggest that either OH*, OOH*, or both surface oxidants, promote C₃H₆ activation. Incorporating H₂O₂ into the feed (C₃H₆-O₂-H₂O-H₂O₂) increases the OOH* coverages selectively, because H₂O₂ either dissociatively adsorbs as OOH* and H* or as two OH* molecules, which recombine to form H_2O^* that transfers one of its hydrogen atoms to O₂* to form OOH*. The addition of 0.15 kPa H_2O_2 to the reaction mixtures and the higher OOH^{*} coverages increase in the CO_x site-time-yield by 2–20 folds, relative to those in C₃H₆-O₂ and C₃H₆-O₂-H₂O mixtures (Fig. 7). An increase in H₂O₂ pressure from 0.15 to 0.25 kPa causes a further CO_x site-time-yield

increase by another 1.2 to 2 times. These results suggest that OOH* is a more effective oxidant than O*, O_2^* , and OH* for C_3H_6 activation.

Replacing the 1.1 kPa H₂O-0.15 kPa H₂O₂ reactants with partially deuterated compounds of 1.1 kPa H_mD_{2-m}O and 0.15 kPa H_pD_{2-p}O₂ (*m*, *p* = 0, 1, or 2; 0.46 kPa H₂O, 0.51 kPa HDO, 0.13 kPa D₂O, 0.06 kPa H₂O₂, 0.07 kPa HDO₂, 0.02 kPa D₂O₂) decreases the site-time-yields by 17 ± 2% at >15 kPa C₃H₆ (Fig. 7). These isotopic effects, after considering the isotopic distributions of the deuterium atoms among the H_mD_{2-m}O and H_pD_{2-p}O₂, translate to a kinetic isotope effect for H₂O₂-to-D₂O₂ {(r_{CO_x,H_2O_2})(r_{CO_x,D_2O_2})⁻¹} of 1.93 ± 0.12. This kinetic isotope effect reflects the H₂O₂ or D₂O₂ dissociation (e.g., D₂O₂ \rightarrow D* + OOD*) as a kinetically relevant step in C₃H₆ combustion. This strong kinetic isotope effect confirms that OOH* or OOD* directly involves in the kinetically relevant step

Fig. 7. CO_x site-time-yields (per exposed Ag atom) on dispersed Ag clusters (5 wt% Ag/SiO₂, 5.1 nm clusters) during C₃H₆ oxidation reactions in C₃H₆-O₂ mixtures with 0.25 kPa O₂ (\spadesuit), in C₃H₆-O₂-H₂O mixtures with 0.25 kPa O₂ and 1.1 kPa H₂O (\blacksquare), and in C₃H₆-O₂-H_mD_{2-m}O-H_pD_{2-p}O₂ (m, p = 0, 1, or 2) mixtures with 0.25 kPa O₂, 1.1 kPa H_mD_{2-m}O (0.46 kPa H₂O, 0.51 kPa HDO, 0.13 kPa D₂O), and 0.15 kPa H_pD_{2-p}O₂ (0.06 kPa H₂O₂, 0.07 kPa HDO₂, 0.02 kPa D₂O), 0.05 kPa O₂, 1.1 kPa H₂O, and 0.15 kPa H₂O, 0.01 S kPa O₂, 1.1 kPa H₂O, (\blacksquare), and 0.25 kPa O₂, 1.1 kPa H₂O, and 0.15 kPa H₂O₂ (\blacklozenge), and 0.25 kPa O₂, 1.1 kPa H₂O, and 0.25 kPa H₂O₂ (\blacklozenge) as a function of C₃H₆ pressure at 323 K (2 × 10³ cm₃³T₉ c_a⁻¹ h⁻¹).

for CO_x formation during C_3H_6 combustion in C_3H_6 - O_2 - $H_mD_{2-m}O$ - $H_pD_{2-p}O_2$ mixtures.

We note that all reaction mixtures ($C_3H_6-O_2$, $C_3H_6-O_2-H_2O$, and $C_3H_6-O_2-H_mD_{2-m}O-H_pD_{2-p}O_2$) form CO₂ and H₂O as the predominant products while C_3H_6O formation remains unobservable within the experimentally detectable limit (0.1 ppmv, which corresponds to a product selectivity smaller than 0.7%) at 323 K. The lack of C_3H_6O formation on Ag, especially for the case with H_2O_2 oxidant, contradicts the high epoxidation selectivities (~90%) detected during $C_3H_6-H_2O_2$ reactions on homogeneous Mo (O)₂(RO)₂, VO(OOR)(ROR), and Ti(OR)₄ complexes (e.g., R = CH₃, CH₃CH₂) [2], as well as heterogeneous TiO₂ [7], titanium silicate (TS-1) [7], Ti-Beta [2], and Ti-MOR [2] catalysts. The contrasting selectivity indicates that the catalytic roles of OOH* species differ between the two distinct classes of catalyst materials.

3.6. Effects of mean Ag cluster diameter and surface coordination on C_3H_6 -O₂ turnover rates and selectivities

Here, we probe the effects of Ag cluster diameter, average surface Ag coordination, and their bindings to the adsorbates on the C_3H_6O and CO_x site-time-yields (Eqs. (4a) and (4b). Adsorption is less exothermic on (1 1 1) surfaces than the coordinatively less saturated (1 0 0) surfaces, edge sites, and corner sites, as predicted from the bond-order-bond-conservation principle [60] and confirmed with DFT calculations [24]. The heat of O* adsorption is 61 kJ mol⁻¹ on Ag(1 1 1) and it increases to 92 kJ mol⁻¹ on Ag(1 0 0), when both surfaces contain 0.22 ML O* [24].

Fig. 8 shows C₃H₆O and CO_x site-time-yields ($r_{C_3H_6O}$ and r_{CO_x}) as a function of mean cluster diameter (3.1–29.3 nm Ag, 1 and 5 wt% Ag/SiO₂) during C₃H₆-O₂ reactions (3 kPa O₂, 10 kPa C₃H₆) at 443 K. Increasing the mean Ag cluster diameter leads to a commensurate increase in the C₃H₆O site-time-yield by a factor of ~4.8. As the mean Ag cluster diameter increases, the average coordination of exposed Ag atoms increases, and thus, the average heat of O^{*} adsorption decreases and the equilibrium constant for O^{*} adsorption ($K_{O_2}K_O$, Steps 1–2) becomes smaller. This decrease in the $K_{O_2}K_O$ term affects both the numerator and denominator of the C₃H₆O site-time-yield equation (Eq. (4a)), because the denominator term $K_{O_2}^{0.5}K_O^{0.5}[O_2]^{0.5}$ is the dominant term and O^{*} is the most abundant surface intermediate (0.62–0.90 ML O^{*}), as shown in

Fig. 8. Site-time-yields of $C_3H_6O(\bullet)$ and $CO_x(\bullet)$ and C_3H_6O selectivities (\blacklozenge) during $C_3H_6-O_2$ reactions on dispersed Ag clusters (1 and 5 wt% Ag/SiO₂) as a function of their mean cluster diameters (determined by O₂ chemisorption) at 443 K (3 kPa O₂, 10 kPa C_3H_6 , 2 × 10³ cm³_{5TP} g_{cat}^{-1} h⁻¹).

Section 3.3. Thus, the net cluster size effects on the site-timeyields of C_3H_6O (Eq. (4a)) primarily reflect the increase in the rate constant, $k_{C_3H_6O*}$ (Step 8), as the O* atoms become more weakly bound on the larger Ag clusters, thus decreasing the activation barriers for C_3H_6 epoxidation reactions.

The site-time-yield for CO_x formation increases more sensitively with cluster diameter than that for C₃H₆O formation, i.e., by a factor of ~8.5 as cluster diameter increases from 3.1 to 29.3 nm (Fig. 8). As a result of this increase, the selectivity to C_3H_6O decreases by a factor of \sim 1.5. As cluster diameter increases, the heats of O₂*, O*, C₃H₆*, and H₂O* adsorption and the related equilibrium constants K_{0_2} , $K_{0_2}K_0$, $K_{C_2H_6}$, and K_{H_2O} decrease. The more weakly bound C₃H₆*, O*, H₂O*, and O₂* reactants on the larger clusters may also decrease the energy difference between the reactant and the transition state for C₃H₆*-O* combustion and OOH* formation reactions, thus decreasing the activation barriers and increasing the $k_{C_3H_6-0^*}$ and k_{OOH} values. In combination, these changes in the rate and equilibrium constants ($k_{C_3H_6-0^*}$, k_{OOH} , K_{O_2} , $K_{O_2}K_{O_3}$, $K_{C_{3}H_{6}}$, and $K_{H_{2}O}$) explain the net cluster size effects on the CO_{x} site-time-yields (Eq. (4b)). The changes in the numerator $K_{0_2}K_0$, $K_{C_3H_6}$, K_{O_2} , and K_{H_2O} terms are partially compensated by the changes of the dominant $K_{0,2}K_0$ term in the denominator of Eq. (4b). Therefore, the effects of cluster size on CO_x site-time-yields reflect predominantly the net increases in $k_{C_3H_6-0^*}$ and k_{OOH} with increasing coordinative saturation of the Ag sites.

4. Conclusions

Rate measurements in the kinetically controlled regime, together with oxygen and propylene uptakes, lead to a proposed sequence of elementary steps that describes the concomitant propylene epoxidation and combustion reactions on dispersed Ag clusters. C_3H_6 reacts with an adsorbed oxygen adatom (O^*) to produce the desired propylene oxide. In the parallel C₃H₆ combustion sequence, the kinetically relevant step does not involve C₃H₆ and O₂ activation. We hypothesize that hydrogen transfer from physisorbed H_2O^* , a product of the combustion reaction, to O_2^* leads to the formation of a hydroperoxyl intermediate (OOH*) that participates in the hydrogen abstraction from $C_3H_6^*$ as a route to CO, CO₂, and H₂O formation. Rates measured with $C_3H_6-O_2-$ H₂O-H₂O₂ mixtures suggest the catalytic involvements of the hydroperoxyl species, as these mixtures lead to larger OOH* surface contents, more effective hydrogen abstraction, and in turn, higher C₃H₆ combustion rates, as also confirmed from strong H_2O_2/D_2O_2 kinetic isotope effects. Kinetic analyses of both the C_3H_6O and CO_x formation rates show that Ag cluster surfaces are predominantly covered with O* adatoms and a small fraction of $C_3H_6^*$. O_2 adsorption and activation remain guasi-equilibrated because the rates of O^{*} scavenging by C₃H₆ are small and insignificant relative to the much larger rates of O2 dissociation and O* recombination. C₃H₆ adsorption is quasi-equilibrated and exhibits non-ideal behavior captured by the Sips isotherm, which accounts for the variation in the heat of C₃H₆* adsorption with an exponential distribution. Larger Ag clusters bind O*, O2*, C3H6*, and H2O* more weakly than smaller clusters and promote both CO_x much more than C₃H₆O formation, therefore, the selectivities towards C₃H₆O decrease.

Acknowledgements

This study was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation. We also acknowledge the Queen Elizabeth II Graduate Scholarships in Science & Technology and the Ontario Graduate Scholarships awarded to Petar T. Lachkov.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jcat.2018.07.011.

References

- [1] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res. 45 (2006) 3447-3459.
- [2] S.T. Oyama, in: Mech. Homog. Heterog. Epoxidation Catal., Elsevier, Amsterdam, 2008, pp. 3-99.
- [3] D.L. Trent, Kirk-Othmer Encycl. Chem. Technol., John Wiley & Sons, Inc., 2001.
- [4] W.F. Richey, Kirk-Othmer Encycl. Chem. Technol., John Wiley & Sons, Inc., 2000.
- [5] J.K.F. Buijink, J.-P. Lange, A.N.R. Bos, A.D. Horton, F.G.M. Niele, in: Mech. Homog. Heterog. Epoxidation Catal., Elsevier, 2008, pp. 355-371.
- [6] K.-T. Li, C.-C. Lin, P.-H. Lin, in: Mech. Homog. Heterog. Epoxidation Catal., Elsevier, 2008, pp. 373-386.
- [7] M. Haruta, J. Kawahara, in: Mech. Homog. Heterog. Epoxidation Catal., Elsevier, 2008, pp. 297-313.
- [8] T.A. Nijhuis, E. Sacaliuc, B.M. Weckhuysen, in: Mech. Homog. Heterog. Epoxidation Catal., Elsevier, 2008, pp. 339-354.
- [9] A.M. Joshi, B. Taylor, L. Cumaranatunge, K.T. Thomson, W. Nicholas Delgass, in: Mech. Homog. Heterog. Epoxidation Catal., Elsevier, 2008, pp. 315-338.
- [10] S. Linic, M.A. Barteau, J. Catal. 214 (2003) 200-212.
- [11] C. Stegelmann, N.C. Schiødt, C.T. Campbell, P. Stoltze, J. Catal. 221 (2004) 630-649.
- [12] P.A. Kilty, W.M.H. Sachtler, Catal. Rev. 10 (1974) 1-16.
- [13] J. Lu, J.J. Bravo-Suárez, A. Takahashi, M. Haruta, S. Oyama, J. Catal. 232 (2005) 85-95.
- [14] N.W. Cant, W.K. Hall, J. Catal. 52 (1978) 81-94.
- [15] R.A. Van Santen, C.P.M. de Groot, J. Catal. 98 (1986) 530-539.
- [16] W. Yao, G. Lu, Y. Guo, Y. Guo, Y. Wang, Z. Zhang, J. Mol. Catal. Chem. 276 (2007) 162-167.
- [17] S.R. Seyedmonir, J.K. Plischke, M.A. Vannice, H.W. Young, J. Catal. 123 (1990) 534-549.
- [18] C.T. Campbell, J. Catal. 94 (1985) 436-444.
- [19] R.B. Grant, R.M. Lambert, Surf. Sci. 146 (1984) 256-268.
- [20] A. Ayame, S. Eimaeda, L. Feng, H. Hayasaka, Appl. Catal. Gen. 304 (2006) 93-108
- [21] E.A. Carter, W.A. Goddard III, J. Catal. 112 (1988) 80-92.
- [22] C. Stegelmann, P. Stoltze, J. Catal. 226 (2004) 129–137.
- [23] S. Linic, M.A. Barteau, J. Am. Chem. Soc. 124 (2002) 310-317.
- [24] A. Pulido, P. Concepción, M. Boronat, A. Corma, J. Catal. 292 (2012) 138-147.
- [25] D. Torres, N. Lopez, F. Illas, R.M. Lambert, Angew. Chem. 119 (2007) 2101-2104.

- [26] L.M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli, B. Lee, S. Seifert, R.E. Winans, J.W. Elam, M.J. Pellin, Catal. Today 160 (2011) 116-130.
- [27] L. Cheng, C. Yin, F. Mehmood, B. Liu, J. Greeley, S. Lee, B. Lee, S. Seifert, R.E. Winans, D. Teschner, R. Schlögl, S. Vajda, L.A. Curtiss, ACS Catal. 4 (2014) 32-39.
- [28] M. García-Diéguez, Y.-H. (Cathy) Chin, E. Iglesia, J. Catal. 285 (2012) 260-272.
- [29] S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36 (2003) 255-263.
- [30] J. Huang, M. Haruta, Res. Chem. Intermed. 38 (2012) 1-24.
- [31] W. Su, S. Wang, P. Ying, Z. Feng, C. Li, J. Catal. 268 (2009) 165–174. [32] W. Song, D.M. Perez Ferrandez, L. van Haandel, P. Liu, T.A. Nijhuis, E.J.M.
- Hensen, ACS Catal. 5 (2015) 1100-1111. [33] S. Kanungo, Y. Su, M.F.N. d'Angelo, J.C. Schouten, E.J.M. Hensen, Catal. Sci.
- Technol. 7 (2017) 2252-2261. [34] X. Zheng, Q. Zhang, Y. Guo, W. Zhan, Y. Guo, Y. Wang, G. Lu, J. Mol. Catal. Chem.
- 357 (2012) 106-111. [35] Z. Song, N. Mimura, J.J. Bravo-Suárez, T. Akita, S. Tsubota, S.T. Oyama, Appl. Catal. Gen. 316 (2007) 142-151.
- [36] H. Chu, L. Yang, Q. Zhang, Y. Wang, J. Catal. 241 (2006) 225-228.
- [37] S.J. Khatib, S.T. Oyama, Catal. Rev. 57 (2015) 306-344.
- [38] G. Bergeret, P. Gallezot, in: Handb. Heterog. Catal., Wiley-VCH, Weinheim, 2008, pp. 738-765.
- [39] A.W. Czanderna, J. Phys. Chem. 68 (1964) 2765-2771.
- [40] W.W. Smeltzer, E.L. Tollefson, A. Cambron, Can. J. Chem. 34 (1956) 1046–1060. [41] D.R. Lide, CRC Handbook of Chemistry and Physics, 78th ed., CRC Press, Boca Raton, Florida, 1997.
- [42] J.J.F. Scholten, J.A. Konvalinka, F.W. Beekman, J. Catal. 28 (1973) 209-220.
- [43] A.F. Benton, L.C. Drake, J. Am. Chem. Soc. 56 (1934) 255-263.
- [44] S. Chrétien, M.S. Gordon, H. Metiu, J. Chem. Phys. 121 (2004) 9931–9937.
- [45] I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361–1403.
- [46] M.I. Temkin, V. Pyzhev, Acta Physiochim. USSR 12 (1940) 217-222.
- [47] R. Sips, J. Chem. Phys. 16 (1948) 490-495.
- [48] I. Onal, D. Düzenli, A. Seubsai, M. Kahn, E. Seker, S. Senkan, Top. Catal. 53 (2009) 92-99.
- [49] J. Lu, J.J. Bravo-Suárez, M. Haruta, S.T. Oyama, Appl. Catal. Gen. 302 (2006) 283-295
- [50] D.C. Ford, Surf. Sci. 604 (2010) 1565-1575.
- [51] M.A. Barteau, R.J. Madix, Surf. Sci. 97 (1980) 101-110.
- [52] C.T. Campbell, Surf. Sci. 157 (1985) 43-60.
- [53] K. Prince, G. Paolucci, A. Bradshaw, K. Horn, C. Mariani, Vacuum 33 (1983) 867.
- [54] W.-S. Sheu, M.-W. Chang, Surf. Sci. 628 (2014) 104–110. [55] J. Saavedra, H.A. Doan, C.J. Pursell, L.C. Grabow, B.D. Chandler, Science 345
- (2014) 1599-1602.
- [56] W. Tu, Y.-H. (Cathy) Chin, Angew. Chem. Int. Ed. 53 (2014) 12148–12152.
 [57] P.D. Klugherz, P. Harriott, AIChE J. 17 (1971) 856–866.
- [58] R.E. Kenson, M. Lapkin, J. Phys. Chem. 74 (1970) 1493–1502.
- [59] E.M. Stuve, R.J. Madix, B.A. Sexton, Surf. Sci. 111 (1981) 11-25.
- [60] E. Shustorovich, in: Adv. Catal., Academic Press, 1990, pp. 101–163.