Publications

  1. Weifeng Tu, Mireille Ghoussoub, Chandra Veer Singh, and Ya-Huei (Cathy) Chin, Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation, submitted to J. Am. Chem. Soc.
  2. Yifei Yang, Fan Lin, Honghi Tran, and Ya-Huei (Cathy) Chin, Butanal Condensation Chemistry Catalyzed by Brønsted Acid Sites on Polyoxometalate Clusters, ChemCatChem, 6(2017), 287-299, doi:10.1002/ cctc.201601042
    Yang_et_al-2017-ChemCatChemChemCatChem Cover
  3. Fan Lin and Ya-Huei (Cathy) Chin, Catalytic Pathways and Kinetic Requirements for Alkanal Deoxygenation on Solid Tungstosilicic Acid Clusters, ACS Catal., 6(2016), 6634-6650, doi:10.1021/acscatal.6b01832
    TOC_Lin and Chin_ACS Catal 2016
  4. Fan Lin and Ya-Huei (Cathy) Chin, Alkanal Transfer Hydrogenation Catalyzed by Solid Brønsted Acid SitesJ. Catal., 341 (2016) 136–148, doi:10.1016/j.jcat.2016.06.008
    TOC_Lin
  5. Petar Lachkov and Ya-Huei (Cathy) Chin, Catalytic Consequences of Reactive Oxygen Species during C3H6 Oxidation on Ag Clusters, J. Catal., submitted
  6. Ya-Huei (Cathy) Chin, Mónica García-Diéguez, and Enrique Iglesia, Dynamics and Thermodynamics of Pd–PdO Phase Transitions: Effects of Pd Cluster Size and Kinetic Implications for Catalytic Methane Combustion, J. Phys. Chem. C, 2016, 120, 1446−1460, dx.doi.org/10.1021/acs.jpcc.5b06677
    Pd-PdO
  7. Junnan Shangguan, Mariefel V. Olarte, and Ya-Huei (Cathy) Chin, Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous MediumJ. Catal., 340 (2016) 107–121, doi:10.1016/j.jcat.2016.04.024 TOC_Shangguan
  8. Weifeng Tu and Ya-Huei (Cathy) Chin, Catalytic Consequences of Chemisorbed Oxygen during Methanol Oxidative Dehydrogenation on Pd ClustersACS Catal., 2015, 5(6):3375-3386, dx.doi.org/10.1021/acscatal.5b00068
    TOC Tu 2015 ACS Catalysis
  9. Weifeng Tu and Ya-Huei (Cathy) Chin, Catalytic Consequences of the Thermodynamic Activities at Metal Cluster Surfaces and their Periodic Reactivity Trend for Methanol OxidationAngew. Chem. Int. Ed., 2014, 53:12148-12152, dx.doi.org/10.1002/anie.201405232
    TOC-tu
  10. Weifeng Tu and Ya-Huei (Cathy) Chin, Catalytic Consequences of the Identity and Coverages of Reactive Intermediates during Methanol Partial Oxidation on Pt ClustersJ. Catal., 2014, 313:55-69, dx.doi.org/10.1016/j.jcat.2014.01.018
    untitled
  11. Fan Lin and Ya-Huei (Cathy) Chin, “Mechanism of intra- and inter-molecular C=C bond formation of propanal on Brønsted acid sites contained within MFI zeolites”  J. Catal., 2014, 311:244–256, dx.doi.org/10.1016/j.jcat.2013.11.018
    TOC_Lin-JC2014.gif
  12. Ya-Huei (Cathy) Chin, Corneliu Buda, Matthew Neurock, and Enrique Iglesia, “Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH4 Reactions on Pd CatalystsJ. Am. Chem. Soc., 2013, 135 , 15425–15442, doi: 10.1021/ja405004m.
    TOC_Chin-JACS2013
  13. M. García-Diéguez, Y-H. Chin, and E. Iglesia, “Catalytic Reactions of Dioxygenwith Ethane and Methane on Platinum Clusters: Mechanistic Connections, Site Requirements, and Consequences of Chemisorbed Oxygen” J. Catal. 2012, 285, 20-272.dx.doi.org/10.1016/j.jcat.2011.09.036
  14. Y-H. Chin and E. Iglesia, “Elementary Steps, the Role of Chemisorbed Oxygen, and the Effects of Cluster Size in Catalytic CH4-O2 Reactions on Palladium” J. of Phys. Chem. C, 2011, 115, 17845-17855.
  15. Y-H. Chin, C. Buda, M. Neurock, and E. Iglesia, “Reactivity of Chemisorbed Oxygen Atoms and their Catalytic Consequences during CH4-O2 Catalysis on Supported Pt ClustersJ. of Amer. Chem. Soc.2011,133 (40), 5958–15978, dx.doi.org/10.1021/ja202411v.
  16. Y-H. Chin, C. Buda, M. Neurock, and E. Iglesia, “Selectivity of Chemisorbed Oxygen in C-H Bond Activation and CO Oxidation and Kinetic Consequences for CH4-O2 Catalysis on Pt and Rh ClustersJ. Catal. 2011, 283, 10-24.
  17. E. B. Fox, S. Velu, M. H. Engelhard, Y-H. chin, J. T. Miller, J. Kropf, C. S. Song, “Characterization of CeO2-supported Cu-Pd bimetallic catalyst for the oxygen-assisted water-gas-shift reaction” J. Catal. 2008, 260 (2) 358-370.
  18. D. L. King, J. J. Strohm, X. Q. Wang, H. S. Roh, C.M. Wang, Y-H. Chin, Y. Wang, Y.B. Lin, R. Rozmiarek, and P. Singh, “Effect of nickel microstructure on methane steam-reforming activity of Ni-YSZ cermet anode catalyst”, J. Catal. 2008, 258 (2) 356-365.
  19. D.H. Kim, Y-H. Chin, J. H. Kwak, C.H. F. Peden, “Promotional effects of H2O treatment on NOx storage over fresh and thermally aged Pt-BaO/Al2O3 lean NOx trap catalyst”, Catal. Letters 2008, 124 (1-2) 39-45.
  20. D.H. Kim, Y-H. Chin, G. C. Muntean, A. Yezerets, N. W. Currier, W. S. Epling, H. Y. Chen, H. Hess, and C.H. F. Peden, “Design of a reaction protocol for decoupling sulfur removal and thermal aging effects during desulfation of Pt-BaO/Al2O3 lean NOx trap catalyst”, Ind. & Engr. Chem. Res. 2007, 46 (9) 2735-2740.
  21. R.A. Dagle, Y-H. Chin, Y. Wang, “The effects of PdZn crystallite size on methanol steam reforming”, Topics in Catal. 2007, 46(3-4), 358-362.
  22. D.H. Kim, Y-H. Chin, G. C. Muntean, A. Yezerets, N. W. Currier, W. S. Epling, H. Y. Chen, H. Hess, and C.H. F. Peden, “Relationship of Pt particle size to the NOx storageperformance of thermally aged Pt/Ba/Al2O3 lean NOx trap catalysts”, Ind. & Engr. Chem. Res. 2006, 45 (26):8815-8821.
  23. Y-H. Chin, D. L. King, H. S. Roh, Y. Wang, and S. M. Heald, “Structure and reactivity investigations on supported bimetallic Au-Ni catalysts used for hydrocarbon steam reforming”, J. Catal. 2006, 244(2):153-162.
  24. H. S. Roh, Y. Wang, D. L. Wang, A. Platon, and Y-H. Chin, “Low temperature and H2 selective catalysts for ethanol steam reforming”, Catal. Letters, 2006, 108(1-2):15-19.
  25. R. S. Disselkamp, R. G. Tonkyn, Y-H. Chin, and C. H. Peden, “Developing multiple-site kinetic models in catalysis simulation: A case study of O2+2NOßà2NO2 oxidation-reduction chemistry on Pt(100) catalyst crystal facets”, J. Catal., 2006, 238(1): 1-5.
  26. J. Kugai, V. Subramani, C. S. Song, M. H. Engelhard, and Y-H. Chin, “Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol”, J. Catal., 2006, 238(2): 430-440.
  27. V. Subramani, C. Song, M. H. Engelhard, and Y-H. Chin, “Adsorptive removal of organic sulfur compounds from jet fuel over K-exchanged Ni-Y zeolites prepared by impregnation and ionexchange” Industrial & Engineering Chemistry Research, 2005, 44(15):5740-5749.
  28. D. Palo, J. Holladay, R. A. Dagle, and Y-H. Chin, “Integrated methanol fuel processors for portable fuel cell systems”, Microreactor Technology and Process Intensification, ACS Symposium Series 2005, 914:209-223.
  29. Y. Wang, B. R. Johnson, J. Cao, Y-H. Chin, R. T. Rozmiarek, Y. Gao, and A. L. Tonkovich, “Engineered catalysts for microchannel reactor applications” Microreactor Technology and Process Intensifications, ACS Symposium Series 2005, 914:102-118.
  30. D. Kim, Y-H. Chin, J. Kwak, J. Szanyi, and C. H. Peden, “Changes in Ba phases in BaO/Al2O3 upon thermal aging and H2O treatment”, Catal. Lett.,2005, 105(3-4): 259-268.
  31. Y-H. Chin, J. L. Hu, C-S. Cao, Y-F. Gao, and Y. Wang, “Preparation of a novel structured catalyst based on aligned carbon nanotube arrays for a microchannel Fischer-Tropsch synthesis reactor”, Catal. Today, 2005, 110 (1-2): 47-52.
  32. S-Y. Chin, Y-H. Chin, M. D. Amiridis, “Hydrogen production via the catalytic cracking of ethane over Ni/SiO2 catalysts”, Appl. Catal. A, 2006, 300(1):8-13.
  33. R.S. Disselkamp, Y-H. Chin, and C.H. Peden, “The effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of 3-buten-2-ol on Pd-black”, Journal of Catalysis, 2004, 227, 552.
  34. Y. Wang, Y-H. Chin, R. T. Rozmiarek, B. R. Johnson, Y. Gao, J. Watson, A. Y. L. Tonkovich, and D. P. VanderWiel, “Highly active and stable Rh/MgO-Al2O3 catalysts for methane steam reforming”, Catal. Today, 2004, 98, 575.
  35. Y-H. Chin, Y. Wang, R.A. Dagle, and X-S. Li, “Methanol steam reforming over Pd/ZnO: Catalyst preparation and pretreatment studies”, Fuel Processing Technology, 2003, 83, 193.
  36. J. Hu, Y. Wang, D. VanderWiel, C. Chin, D. Palo, R. Rozmiarek, R. Dagle, J. Cao, J. Holladay, and E. Baker, “Fuel processing for portable power applications”, Chemical Engineering Journal, 2003, 93, 55.
  37. D. R. Palo, J.D. Holladay, R.T. Rozmiarek, C.E. Guzman-Leong, Y. Wang, J. Hu, Y-H. Chin, R.A. Dagle, and E.G. Baker, “Development of a Soldier-Portable Fuel Cell Power System, Part I:A Bread-Board Methanol Fuel Processor”, Journal of Power Sources, 2002, 108, 28.
  38. Y-H. Chin, R. Dagle, A. Dohnalkova, J. Hu, Y. Wang, and E. Baker, “Methanol-steam reforming over Pd/ZnO using microchannel chemical reactors”, Catalysis Today, 2002, 77, 79.
  39. Y-H. Chin, W. E. Alvarez, and D. E. Resasco, “Sulfated zirconia and tungstated zirconia as effective supports for Pd-based SCR catalysts”, Catalysis Today, 2000, 62, 159.
  40. Y-H. Chin, W. E. Alvarez, and D. E. Resasco, “Comparison between CH4 and C3H6 as reducing agents in the SCR of NO over Pd supported on tungstated zirconia”, Catalysis Today, 2000, 62, 291.
  41. Book Chapter: Y-H. Chin and D. E. Resasco, “Catalytic oxidation of methane on supported Pd under lean conditions: kinetics, structure, and properties”, in “Catalysis”, Royal Society ofChemistry, 1999, 14, Chapter 1, pg. 1-39.
  42. Y-H. Chin, A. Pisanu, L. Serventi, W. E. Alvarez, and D. E. Resasco, “NO reduction by methane in the presence of excess oxygen over Pd/Sulfated Zirconia catalysts”, Catalysis Today, 1999, 54, 419.
  43. A. Ali, Y-H. Chin, and D. E. Resasco, “Redispersion of Pd on acidic supports and loss of methane combustion activity during the selective reduction of NO by CH4”, Catalysis Letters, 1998, 56, 111.

Patents

  1. U.S. Patent 7585472: Microcombustors, microreformers and methods involving combusting or reforming fluids. Issue Date 09/08/2009.
  2. U.S. Patent 7563390 B2: Alcohol steam reforming catalysts and methods of alcohol steam reforming. Issue Date 07/21/2009.
  3. U.S. Patent 7470648: Reforming catalysts. Issue Date 12/30/2008.
  4. AU 2002/367020 B2: Structures containing carbon nanotubes and a porous support, methods of making the same, and related uses. Issue Date 11/20/2008.
  5. U.S. Patent 7288576: Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts. Issue date: 10/30/2007.
  6. U.S. Patent 7208136: Alcohol steam reforming catalysts and methods of alcohol steam reforming. Issue date: 4/24/2007.
  7. U.S. Patent 7084180: Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor. Issue date: 08/01/2006.
  8. U.S. Patent 7077643 B2: Microcombustors, microreformers, and methods for combusting and for reforming fluids. Issue date: 07/18/2006.
  9. EP 1651562 (A2): Catalysts, systems and methods of steam reforming, and methods of making steam reforming catalysts. Issue date: 05/03/2006.
  10. U.S. Patent 7011760: Carbon nanotube-containing structures, methods of making, and processes using same. Issue date: 03/14/2006
  11. U.S. Patent 7008969: Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts. Issue date: 03/07/2006.
  12. CA 2560831: Protected alloy surfaces in microchannel apparatus and catalysts, alumina supported catalysts, catalyst intermediates, and methods of forming catalysts and microchannel apparatus. Issue date: 09/22/2006
  13. U.S. Patent 6824689: Carbon nanotube-containing structures, methods of making, and processes using same. Issue date: 11/30/2004.
  14. U.S. Patent 6713519: Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts. Issue date: 03/30/2004.